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Abstract 

This paper aims at predicting asset prices. It uses both numbers and text 

dataset with various statistical models such as linear regression, LASSO, partial 

least squares (PLS), principal component analysis/regression (PCA/R), CART Tree, 

random forest and averaging modeling. Except SP500 historical prices, CPI, and 

Fama-French 3 factors, all the dataset used in this paper were constructed by the 

author. Most numbers variables are newly derived from the prices, CPI, and so on. 

Text data were scraped from Reuters online news archive. 3,279,343 Reuters news 

were collected, which covers since Jan 1st, 2007 to Apr 29th, 2018. The results show 

that random forest has the best explanatory power, while CART Tree has the best 

predicting power with low out-of-sample R2 (OOS R2). 
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1. Introduction 
Predicting asset prices is always one of the major research topics in finance. One way to predict 

asset prices is to look for key financial factors which could explain the variances in asset prices. 

For instance, CAPM describes how the systematic risk, characterizing by market excess return, 

correlate with asset excess returns. Afterwards, in 1992 Fama and French proposed the well-known 

three factors, i.e. SML, HML, and market excess return. Nowadays, hundreds of thousand factors 

have been discovered, but most of them are only able to work well under certain conditions. 

In addition to predict stock prices by using financial factors, as natural language processing 

gets more popular, scholars started to integrate textual dataset into prediction. Information about 

market sentiment is extracted from the text corpus, which makes sentiment another factor playing 

a role in predicting stock prices.  

In this paper, I aim to build statistical models which could predict the stock prices at a certain 

level of out-of-sample accuracy. To achieve this goal, I first collected and cleaned the dataset 

through the following steps: 
 

(1) Scraped 3,279,343 Reuters news since Jan 1st, 2007 to May 29th, 2018 from its archive.  

(2) Processed the Reuters corpus via tokenization, stop-list words removal, punctual removal, and 

lemmatization. Finally, the words with the least and largest frequencies were removed. This 

processing reduces the dimensionality of the corpus from 30,729,641 to 24,857,489. 

(3) Extracted sentiment information from the Reuters corpus via using three different popular 

dictionaries, namely AFINN, BING, and NRC. Using various dictionaries not only provides 

richer information about the market sentiment, but also guarantees a more robust analysis and 

results. 

(4) In addition to the textual dataset, I also collected data of stock & index prices (i.e. APPL, 

SP500TR) from Yahoo Finance and Fama-French 3 factors posted online. 
 

Next, I first split the dataset into training and testing sub-data. Training sub-data covers 2250 

rows and testing sub-data covers 573 rows. Then, with the training sub-data, I pursued two 

different approaches to train statistical models. In Approach I, I took the whole tokenized corpus 

into consideration. The corpus was pooled into LASSO. Meanwhile, I applied principal component 

analysis (PCA) as an alternative way of reducing its dimensionality. Then I ran principal 

component regressions (PCR) on the important principal components (PC). In Approach II, I only 



focused on the potential factors affecting stock prices, including Fama-French 3 factors (SML, 

HML, and excess market return), and market sentiment variables. These factors helped train linear 

regression model, LASSO, partial least squares (PLS), CART tree, and random forest. After 

training all the aforementioned models, I tested out-of-sample (OOS) explanatory power of the 

models by looking at OOS R2 and OOS deviance. In short, random forest always give the best 

explanatory power, while CART Tree and LASSO seem to have stronger predicting power.  

The rest of paper is organized as follows: Section 2 discusses data collection and data 

cleaning. Section 3 presents the Approach I of model training and testing processes. Section 4 

displays the Approach II of model training and testing processes. Conclusion is in Section 5.  

 

2. Dataset Collection and Cleaning 
2.1 Data Collection 

I collected two types of dataset, namely numbers and text. The numbers dataset contains 

information of stock & index prices, returns, Fama-French 3 factors. It was collected from Yahoo 

Finance and Professor Famma’s website.  Table 2.1 shows an example of the numbers dataset. 

Text was scraped from Reuters historical archive from Jan 1st, 2007 to Apr 30th, 2018. The scraping 

code was written in Python script. I ran the code on midway terminals from May 17th to June 5th, 

2018. Finally, 3,279,343 of news has been collected.  
 

Table 2.1: An example of numbers dataset  

 

 

 

 

 

 

 
 

2.2 Data Cleaning  
After scraping all the news headlines, I firstly tokenized each headline and removed the 

words on the stop list. Then the punctuations were also removed. Afterwards, the rest of tokens 



were lemmatized. These three steps reduced the dimensionality of the raw corpus form 30,729,641 

to 24,857,489. Finally, I transform all the words into lower case.  
 

2.3 Data Construction 
I constructed one numbers dataset and three text datasets.  

• Numbers dataset: Stock_and_Index.csv 

 This is a table containing the Fama-Frech 3 factors (SML, HML, excess market return), 

stock and index prices (i.e. high, low, open, close, adjusted close prices), and excess returns. In 

this paper, I chose AAPL and SP500 to study how the models fit and predict the stock prices and 

index prices, respectively. Table 2.1 shows the structure of this table. 
 

• Text Dataset I: Word_List.csv 

This is a list of alphabetically-ordered word list containing all the English words which 

have ever appeared in Reuters news headlines since Jan 1st, 2007 to Apr 30th, 2018. Specifically, 

in the cleaned data in Section 2.2, there were still some tokens not identified as English words. To 

make sure that I only keep meaningful tokens, I installed three English dictionaries, namely word 

and wordnet packages of nltk.corpus in python, and an online English words list. Only the tokens 

appearing on all three of English dictionaries could be kept on the Word_List.csv. This list contains 

23,508 English words. Table2.2 shows an example of Word_List.csv. 
 

   Table 2.2: An example of Word_List.csv              Table 2.3: Structure of Word_Frequency.csv 

 

 

 

 

 

 

 
 

• Text Dataset II: Word_Frequency.csv 

Based on the Word_List.csv, I counted the word frequencies on a daily basis. Table 2.3 

displays the structure of Word_Frequency.csv. 
 



• Text Dataset III: Sentiment_Factor.csv 

 This table contains the sentiment measures of daily news headlines. To enrich the sentiment 

understanding and guarantee a more accurate and robust results, I extracted market sentiment from 

headlines by applying four dictionaries, namely textBlob, AFINN, BING and NRC. Specifically, 

textBlob is a python package. Given a bag of words as input, it will return a polarity value 

indicating the sentiment. The polarity ranges from -1.0 to 1.0. Negative polarity value represents 

negative sentiment. AFINN is a dictionary assigning each word a sentiment score ranging from -

5.0 to 5.0. BING is a dictionary categorizing each word as binary “negative” or “positive”. NRC 

is a leading lexicon curated by National Research Council Canada, which consists of a 

comprehensive list of ~140,000 English words. NRC dictionary associates each word with one of 

ten emotions, including anger, anticipation, disgust, fear, joy, negative, positive, sadness, surprise 

and trust. Next, I will talk about the processing with each of dictionaries AFINN, BING, and NRC. 
 

Dictionary 1: AFINN 

For each day, I went through all the tokens, and assigned tokens positive or negative values 

according to AFINN dictionary, given that the tokens were on the AFINN list. Those words off 

AFINN were recorded as missing words. Then I sum up negative values of all negative words to 

get the negative score for that day. I got the positive score for that day through a similar way. Then 

I calculated the compounded score by summing up negative and positive scores. Finally, I 

normalized the both negative and positive scores by dividing the sum of negative word number 

and positive word number. Table 2.4 shows an example of my AFINN analysis.  
 

Table 2.4: An example of AFINN structure 

 

 

 

 

 

 

 

 

 



Dictionary 2: BING 

For each day, I went through all the tokens, and classified tokens as positive or negative 

according to BING dictionary, given that the tokens were on the BING list. Those words off BING 

list were recorded as missing words. I counted the number of negative and positive words. I 

calculated the compounded score by subtracting the number of negative words from the number 

of positive words. Then, I normalized the compounded score by dividing the sum of the negative 

words number and positive words number. Table 2.5 gives an example of my BING analysis. 
 

Table 2.5: An example of BING structure 

 

 

 

 

 

 

 

 
 

 

Dictionary 3: NRC 

Table 2.6: An example of NRC structure 

 

 

 

 

 
 

For each day, I went through all the tokens, and classified tokens as anger, anticipation, 

disgust, fear, joy, negative, positive, sadness, surprise or trust according to NRC dictionary, given 

that the tokens were on the NRC list. Those words off NRC list were recorded as missing words. 

Then I calculated the compounded numbers of words in each category. I standardized the 

compounded numbers by dividing total number of words (excluding missing words). Table 2.6 

gives an example of my NRC analysis. 



Finally, I combined all the sentiment scores in the Sentiment_Factor.csv as shown in Table 

2.7. Last but not list, the time frames of dataset Stock_and_Index.csv, Word_Frequency.csv, and 

Sentiment_Factor.csv matched with one another through variable “Date”.  
 

Table 2.7: An example of Sentiment_Factor.csv structure 

 

 

 

 

 

 

3. Approach I: Text Corpus – Word Frequency  
Firstly, I divided the dataset into training and testing sub-data. Training sub-data contains 2250 

rows from 2007-01-04 to 2015-12-21. Testing sub-data contains 573 rows from 2015-12-22 to 

2018-04-30. I made two approaches to training the model. The first approach only considers about 

text corpus, i.e. how the single word frequencies in headlines correlate with stock or index’s excess 

return. The second approach considers about factors, including Fama-French 3 factors (i.e. SME, 

HML, and excess market return), and sentiment factors curated in Section 2.3. I applied LASSO, 

linear PCR, and LASS PCR in the first approach. The second approach was to use linear, LASSO, 

PLS, CART tree, random forest, and these PCR on them. 

In approach one, I pooled whole corpus into models by transferring Word_Frequency.csv 

into a sparse matrix. The dimensionalities of training sparse matrix and testing sparse matrix are 

2250 x 23,509 and 573 x 23,509, respectively. Due to the super large dimension of the sparse 

matrix, I chose models which could reduce the dimension of covariates, namely LASSO and PCA.  
 

3.1 LASSO 
Figure 3.1 displays LASSO regression of excess return on the whole corpus. LASSO only 

keeps 52 words which have non-zero effect on return variances. Table 3.1 shows words having the 

largest effect, either negative or positive, on return variances. Such words are “explicitly”, 

“demigod”, “equalization”, “desensitization”, “dubs”, and so on. However, there is little story by 

merely looking at these single words. The in-sample R2 (IS R2) is 0.165 which is relatively small 



and indicates a relatively weak explanatory power of non-zero coefficient words to explain the 

return variances.  
 

Figure 3.1: LASSO of WordFreq on SP500 return                Table 3.1: Words of largest effect 

 

To find the best lambda which minimizes the mean squared error (MSE), I ran the cross-

validation as displayed in Figure 3.2. The dashed line on the left corresponds to the lambda 

minimizing MSE. The dashed line on the right corresponds to the lambda within the 1 standard 

error from the minimizing lambda. Moreover, the solid line on the left most corresponds to the 

lambda selected by AICc. Figure 3.2 tells that the three lambda candidates are close to each other. 

Hence both cross-validation and information criteria had similar performance in this case. I picked 

the lambda minimizing MSE, yielding the result of cross-validation.  
 

Figure 3.2: Cross-validation of LASSO 
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Next, I tested the training LASSO model with the testing dataset. Figure 3.3 shows the result. 

Red line is actual excess return. Blue line is the poor LASSO predicted excess return. The predicted 

values are too small to be seen any fluctuations. This might be due to the nature of LASSO 

regression, as LASSO punishes large coefficients. Hence when the coefficient values are 

regularized, the predicted values tend to be lower as well. Since the predicting power is so poor, 

there is no doubt that the out-of-sample R2 (OOS R2) is as negative as -6.123. This indicates that 

LSSO model performed even worse than the one merely using the mean of history excess returns 

to predict the future.  

In order to improve LASSO’s performance, I added one more variable, i.e. previous return, to 

the sparse matrix. Although this lead to a larger IS R2 which was 0.252, the OOS R2 was still as 

negative as -4.355.  
 

Figure 3.3: SP500 excess return prediction by LASSO 
Red line is the actual excess return; blue line is the predicted value. 

 

 

 

 

 

 

 

 

 

 

 
 

 

3.2 PCR 
Since PCA collages highly-correlated variables into one component. I firstly inspected the 

correlation among different words. Due to the dimension issue, Figure 3.4 only displays the heat 

plot of the correlation matrix containing words with frequencies from 92 to 95. There are 67 words.  

Next, I obtained the principal components displayed in Figure 3.5. Obviously, principal component 

1 (PC1) explains the largest variances. 



      Figure 3.4: Correlation of word occurrences                     Figure 3.5 PC & variance 
            Only containing words with frequencies  
                                  from 92 to 95 
 

 

 

 

 

 

 

 

 

 

 

 

Next, I predicted the rotates of PCs for each word and plotted them on Figure 3.6 by year. 

Interestingly, there is a sequential order according to years. Both PC1 and PC2 values gradually 

increased over the years. Years 2006 – 2008 had a wider range of PC2 values as well. However, 

since principal component is like a black box containing and synthesizing the raw variables, it is 

hard to trace the story or intuition behind such trend.  
 

Figure 3.6: Textual Environment Evolution by PCA: 2007 ~ 2018 

 

 

 

 

 

 

 

 

 

 



 As mentioned before, PCA helped reduce the dimension of dataset significantly. With the 

cutting dataset, I ran linear regression and LASSO regression to see whether the LASSO 

performance improved or not. To run PCR with enough information inherent in the dataset, I 

picked up the first 200 PCs. With these 200 PCs, I used AICc and BIC to find the best number of 

PCs for a linear regression of excess returns on factors. Figure 3.7 shows the results. Both AICc 

and BIC recommended that PC1 is good enough to model the linear regression. However, the 

performance of PC1 was poor. IS R2 was only 0.000473. Its prediction power is even worse as 

shown in Figure 3.8, and unsurprisingly, followed by a huge negative OOS R2 -102.679. 
 

Figure 3.7: Select the best number of Factors in linear regression by AICc and BIC 

 

Figure 3.8: SP500 excess return prediction by PCR-linear 

 
 

 Then I ran LASSO on those top 200 PCs, filtering out 25 non-zero PCs and yielding the IS 

R2 of 0.0314. Figure 3.9 shows LASSO and cross-validation process. The predicting performance 

is shown in Figure 3.10, followed by OOS R2 -772.247. 

 



Figure 3.9: LASSO and cross-validation process 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: SP500 excess return prediction by PCR-lasso 

 
 

3.3 Summary  
In short, I chose LASSO, PCR of linear and PCR of LASSO to predict the SP500 excess 

return by using the sparse matrix of words from Reuters News headlines. None of these models 

did well in either fitting or predicting excess returns. The reasons might be that merely using raw 

tokens from headlines was costly and potentially lost much information. After all, single words 

carried so little useful information in fitting or predicting excess returns. No need to mention that 

there were thousands of hundreds single words mixing in one dataset and many of them may make 

more noise than contribution to any explanatory or predicting power of the models.  

Therefore, I resorted to a wiser way to extract and compound the information from the 

tokens. I summarized the information as different sentiment factors which were used in combine 

with Fama-French 3 factors. More detailed discussion is in subsection 3.2.  



4. Approach II: A Set of Factors  
In this subsection, I will focus on the factors, including Fama-French 3 factors (SMB, HML, 

and market excess return) and sentiment variables. There are totally nineteen variables, namely 

SMB, HML, Mkr_RF, TextBlob, AFFIN_Positive, AFIINN_Negative, BING_Positive, 

BING_Negative, NRC_Anger, NRC_Disgust, NRC_Fear, NRC_Joy, NRC_Negative, 

NRC_Positive, NRC_Sadness, NRC_Surprise, NRC_Trust and two time trending variables Year 

and Month. Since the dimension is handful, I applied various models to predict  the SP500 excess 

return. Table 4.1 show the structure of all independent variables. 
 

Table 4.1: Key factors 

 

 



4.1 Linear Regression 
I started from linear regression by regressing excess returns on the nineteen factors. Table 4.2 

shows the regression results.  
 

Table 4.2: Linear regression results of excess returns on key factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In column (1), only Fama-French 3 factors were considered. All of them were statistically 

significant, especially SMB not only significant but also imposing a relatively large effect on the 



variance of excess returns. Column (1) regression has IS R2 0.667. Next, I added the sentiment 

factors onto the base Fama-Frech 3 factor model. Column (2) shows that BING_Positive is 

statistically significant and of a large effect. It has negative coefficient -0.167, which means that 

when the percentage of positive words increased by 1 unit, excess returns decreased by 0.167 

percent. However, it is still hard to build up the negative correlation between BING_Positive and 

excess returns. This is because these positive words were not necessarily associate with positive 

situations in financial market. Instead, such positive words reflect a more broad “positive” 

sentiment or merely people’s positive reviews and opinions. Column (2) has IS R2 0.671 which is 

slightly higher that column (1) base model. Since column (2) shows that only four variables are 

statistically significant, I re-ran the regression exclusively onto these four variables, as shown in 

column (3). The IS R2 is 0.669  

Next, to restrict the false discovery rate (FDR) within a certain range, I conducted FDR analysis 

to filter out those “truly” significant variables. Figure 4.1 displays the FDR results corresponding 

to different FDR levels, namely 0.1, 0.05, and 0.01. For FDR at level q= 0.01, the number of tests 

that are significant is 2. The p-value cutoff for FDR at level q= 0.01 is 1.499e-12. Although FDR 

test only filters out two important variables, I would still keep all nineteen variables to get a 

complete understanding about each variable’s performance.  
 

Figure 4.1: FDR of linear regression 
                       FDR = 0.1                                        FDR = 0.05                                       FDR = 0.01 

 

I further tested the predictions of both full model and cut model. Both predictions seem to be 

much better than those in subsection 3.1. Figure 4.2 displays the actual and predicted excess returns 

of the cut model, with an OOS R2 0.564. In contrast, the full model prediction only has OOS R2 

0.559, as shown in Figure 4.3. Hence, removing the redundant variables helps increase the 

predicting power in this case.  



Figure 4.2: SP500 excess return prediction by linear regression (only FF3) 

 
 

Figure 4.3: SP500 excess return prediction by linear regression (+ sentiment) 

 
 

4.2 LASSO 
With all nineteen variables, I ran a LASSO model as shown in Figure 4.4. The fitting has a 

good IS R2 0.670. LASSO model selected 10 non-zero betas, namely NRC_Sadness, SMB, 

BING_Positive, NRC_Negative, NRC_Disgust, NRC_Anger, Mkt_RF, HML, Year and Month.  
 

              Figure 4.4L LASSO regression                                Table 4.3: Regression oefficients 

 

 

 

 

 

 

 



From Table 4.3, we see that NRC_Sadness and SMB has the largest positive and negative 

effects on the variances of excess return. Interestingly, similar to the previous counter-intuition 

where more negative words brought higher excess return, here, keep everything same, when the 

percentage of words with sad sentiment increased by 1 unit, there is 0.38 percentage increase in 

excess returns. However, there is no guarantee that all these 10 non-zero betas are statistically 

significant.  

Figure 4.5: Cross-validation and LASSO model 

 

 

 

 

 

 

 

 

 
 

Figure 4.5 displays the cross-validation results and the LASSO model with the lambda 

minimizing the MSE. With this training model, I used the testing dataset to predict the excess 

returns and compared the predicted values with the actual values in Figure 4.6. The OOS R2 is 

0.518.  

Figure 4.6: SP500 excess return prediction by LASSO 

 

 

 

 

 

 

 

 

 

 



4.3 PLS 
When I fitted the dataset with PLS model, I looped the fitting process with differ number of 

PLS desired directions. I selected the best K with largest IS R2 and adjusted R2, as shown in Figure 

4.7. Both criteria agreed with K = 4 as ideal choice. Therefore, I trained the PLS model with K = 

4 and the result is displayed in Figure 4.8. By the time of completing the calculation of forth 

direction, the correlation between PLS fitted values and actual observations reached as high as 

0.82. Moreover, the IS R2 is 0.509, indicating a fairly satisfying performance. To test the model’s 

predicting power, I predict excess returns on the testing dataset. The result is in Figure 4.9. PLS 

has OOS R2 to be 0.566. 
 

Figure 4.7: Find the best K for PLS regression by R2 and Adjusted R2 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Correlations of PLS predicted values and responses 

 

 

 

 

 

 

 

 

 



Figure 4.9: SP500 excess return prediction by PLS 

 

4.4 CART Tree and Random Forest 
I continued my model fitting and testing with CART Tree. The fitted tree is displayed in Figure 

4.10. Surprisingly, CART tree exclusively used SMB as the cutoff variable at each branch level. 

The IS R2 is 0.471. Then, the predicted values were compared with the actual observed values in 

Figure 4.11. the OOR2 is 0.666. 

Figure 4.10: CART Tree 

 
 

Figure 4.11: SP500 excess return prediction by CART Tree 

 

 

 

 

 

 

 



Besides using tree model, random forest was applied as well. I plotted random forest’s variable 

importance, as shown in Figure 4.12. The result is consistent with previous findings. For example, 

SMB, Mkt_RF always has a significant impact on the variance of excess returns.  BING_Negative 

is another key variable. However, in this case, the importance of HML dwindled. This fitted 

random forest model has IS R2 0.722. I also used the fitted random forest model to predict excess 

returns in the testing dataset. The result is in Figure 4.13. and the OOS R2 is only 0.361. 
 

Figure 4.12: Random forest variable importance 

 
 

Figure 4.13: SP500 excess return prediction by Random Forest 

 

 

 

 

 

 

 

 

4.5 Average Modeling 
My Approach II predicts excess returns by building up models over key factors. The models 

applied were linear regression, LASSO, PLS, Cart Tree and random forest. In addition to trees and 

forests, average modeling serves another way to improve the predicting performance. Hence, now 



I check the MSE of LASSO, Cart Tree and random forests running these models 50 rounds. 

Specifically, instead of cutting testing and dwddwFor each round, I calculated the OOS MSE. 

Afterwards, I collected 50 MSEs for each model and drew the box plot as shown in Figure 3.24. 

Obviously, LASSO outperformed CART Tree and random forest. LASSO model has smallest 

MSEs within a narrowed range. Since there is not much overlapping of MSEs in different models, 

LASSO is always the best choice. And average modeling is unnecessarily as satisfying as factors.  
 

Figure 4.14: MSE of LASSO, CART, and Random Forest 

 

 

 

 

 

 

 
 

 

4.6 PCA 
After going through all such models as linear regression, LASSO, PLS, CART Tree, random 

forest and average modeling, I finally look at PCA. Figure 4.15 tells about how much variance of 

dataset captured by each PC. PC1, PC2, and PC3 have the most significance in summarizing the 

information.  

Figure 4.15: PC & variance 

 

Next, I predicted the rotation of PCs for each variable and plotted them by years. For instance, 

Figure 4.16 displays the PC1-PC2 coordinate. The grid-liked scatter plots location is interesting. 



It tells that, although PC2 is an important component, it deals nothing within each year. Instead, 

PC2 tends to reflect more information variance over different years. To further discover principal 

components’ roles in explaining the information variance, I also plotted on PC1-PC3 and PC2-

PC3 coordinates. PC1-PC3 plot tells that within the same year, PC3 values tend to be stable, but 

PC1 changes in a wide range. Across different years, PC1 varies and PC3 also varies. Additionally, 

in the PC2-PC3 plot, there is only PC2 changes across different years and PC3 changes within the 

same year. To summarize, PC1 captures the variance of information which changes both within 

one year and across different years. PC2 only captures information variances across different years, 

while PC3 only captures information variances within one year. 
 

Figure 4.16: Textual environment evolution by PCs: 2007 ~ 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, I selected the top 10 PCs and ran PCR of linear regression, LASSO, CART Tree, and 

random forest. I hope to see whether the performance could be improved in the hybrid PCR with 

other models. 



4.6.1 PCR-linear 

Table 4.4 displays the PCR linear regression table. Interestingly, although PC1, 2, 3 capture 

most amount of information variance, they are not all statistically significant. Instead, PC3 imposes 

a significant effect on excess returns. There are two columns in Table 4.4, corresponding to a cut 

model and a full model. The IS R2 of cut and full models are 0.00332 and 0.671, respectively. And 

the OOS R2 are -95.137 and 0.563, respectively. Therefore, the full model not only has a great 

explanatory power but also fairly well potential in predicting excess returns. In contrast, the cut 

model performs even worse than the mean of historical data, because its OOS R2 is negative. 
 

Table 4.4: Linear regression results of excess returns on PCs 

 

 



4.6.2 PCR-LASSO 

Running LASSO on the top 10 PCs filtered out 8 non-zero coefficients, as shown in Figure 

4.17. Meanwhile, the IS R2 and OOS R2 are respectively 0.670 and 0.556. 
 

Table 4.17: PCR-LASSO 

 

4.6.3 PCR-CART Tree 

The CART Tree of the top 10 PCs is displayed in Figure 4.18. Both explanatory power and 

predicting power are less satisfying, being 0.338 and 0.229 respectively.  
 

Figure 4.18: PCR-CART Tree 

 

4.6.4 PCR-Random Forest  

Random forest variable importance is plotted in Figure 4.19. PC5 and PC4 are two most 

important, although PC1, 2, 3 capture most amount of information variance. Moreover, the 



importance of PC 5 and 4 is consistent with the tree structure in which PC 5 and 4 play the role as 

cutting points. Moreover, the IS R2 and OOS R2 are respectively 0.697 and 0.301. So, although 

PCR random forest has great explanatory power, its predicting power is still under-performed. 
 

Figure 4.19: Random forest variable importance 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
This paper aims at finding a model having strong predicting power of excess returns. I used 

both numbers and text dataset, and resorted to multiple statistical models, such as linear regression, 

LASSO, PLS, CART Tree, Random Forest, PCA and a series of PCR. I find that the quality of the 

model greatly relies on the quality of the training dataset. For instance, in Section 3 Approach I, I 

directly used the word frequency sparse matrix to run the regressions. The results were poor and 

even worse than the mean value of training data. I think the reason of such poor performance is 

that huge dimensional sparse matrix carries information in an inefficient way. Although the 

information is abundant, each little piece of information is designed to be carried by a single word. 

In that sense, it is hard to fully synthesize the information and use it for training models. In contrast, 

in Section 4 Approach II, I used sentiment factors which are derived from the word frequency 

matrix. This synthesizing step greatly improves the “concentration” of information and hence the 

quality of the dataset. There are indeed a couple of satisfying models which give both high IS R2 

and OOS R2.  



Table 5.1 gives a summary of IS R2 and OOS R2 of all the models built in both Sections 3 and 

4. IS R2 mainly reflects model’s explanatory power, while OOS R2 indicates the model’s 

predicting power. Given the goal of this paper is to predict excess returns, I will focus more on 

OOS R2 while evaluating the performance of each model.  
 

Table 5.1: Summary of R2 of all models 
 

 

Section 3: Approach I 
 

 
 

Section 4: Approach II 
 

 
 

IS R2 
 

 

OOS R2 
 

 IS R2 OOS R2 
Linear Regression   FF3 

Full 
Cut 

0.667 
0.671 
0.669 

 
0.559 
0.564 

LASSO 0.165 -6.23  0.670 0.581 
PLS    0.509 0.566 
CART Tree    0.471 0.666 
Random Forest    0.722 0.361 
PCR – Linear  0.000473 -102.679 Cut  

Full 
0.00332 
0.671 

-95.137 
0.563 

PCR – LASSO  0.0314 -772.247  0.670 0.556 
PCR – CART Tree    0.338 0.229 
PCR – RF     0.697 0.301 
      

        Table 5.1 tells that the random forest model has the strongest explanatory power, which is 

followed by the PCR of random forest. Meanwhile, CART Tree model of key factors on excess 

returns yields the highest OOS R2 0.666, which is a relatively satisfying predicting power. It is 

followed by LASSO with 0.581 OOS R2. 

         As for the future work, I hope to import the daily most-up-to-date date, and pour it into the 

CART Tree model or LASSO model to predict the next-day excess returns. A good prediction 

allows me to make more sensible and wisdom trading decisions. Last but not least, although I have 

one subsection about average modeling, it is not fully complete. So, I hope to create a boxplot 

including all models MSE distributions, and seek for any opportunity to do average modeling.  

 

 


